Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 176
Filter
1.
Huan Jing Ke Xue ; 44(6): 3117-3129, 2023 Jun 08.
Article in Chinese | MEDLINE | ID: covidwho-20238772

ABSTRACT

The short-term reduction of air pollutant emissions is an important emergency control measure for avoiding air pollution exceedances in Chinese cities. However, the impacts of short-term emission reductions on the air qualities in southern Chinese cities in spring has not been fully explored. We analyzed the changes in air quality in Shenzhen, Guangdong before, during, and after a city-wide lockdown associated with COVID-19 control during March 14 to 20, 2022. Stable weather conditions prevailed before and during the lockdown, such that local air pollution was strongly affected by local emissions. In-situ measurements and WRF-GC simulations over the Pearl River Delta (PRD) both showed that, due to reductions in traffic emissions during the lockdown, the concentrations of nitrogen dioxide (NO2), respirable particulate matter (PM10), and fine particulate matters (PM2.5) in Shenzhen decreased by (-26±9.5)%, (-28±6.4)%, and (-20±8.2)%, respectively. However, surface ozone (O3) concentration did not change significantly[(-1.0±6.5)%]. TROPOMI satellite observations of formaldehyde and nitrogen dioxide column concentrations indicated that the ozone photochemistry in the PRD in spring 2022 was mainly controlled by the volatile organic compound (VOCs) concentrations and was not sensitive to the reduction in nitrogen oxide (NOx) concentrations. Reduction in NOx may even have increased O3, because the titration of O3 by NOx was weakened. Due to the small spatial-temporal extent of emission reductions, the air quality effects caused by this short-term urban-scale lockdown were weaker than the air quality effects across China during the widespread COVID-19 lockdown in 2020. Future air quality management in South China cities should consider the impacts of NOx emission reduction on ozone and focus on the co-reduction scenarios of NOx and VOCs.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Ozone , Volatile Organic Compounds , Humans , Nitrogen Dioxide , Communicable Disease Control , Nitric Oxide , Particulate Matter
2.
Int J Environ Res Public Health ; 20(10)2023 05 10.
Article in English | MEDLINE | ID: covidwho-20236123

ABSTRACT

We assessed the disinfection efficacy of an ozone generator prototype in ambulances used to transport patients with coronavirus disease (COVID-19). This research consisted of three stages: in vitro tests using microbial indicators, such as Candida albicans, Escherichia coli, Staphylococcus aureus and Salmonella phage, which were experimentally inoculated onto polystyrene crystal surfaces within a 23 m3 enclosure. They were then exposed to ozone at a 25 ppm concentration using the ozone generator (Tecnofood SAC) portable prototype, and the decimal reduction time (D) was estimated for each indicator. The second stage involved the experimental inoculation of the same microbial indicators on a variety of surfaces inside conventional ambulances. The third stage consisted of exploratory field testing in ambulances used to transport patients with suspected COVID-19. During the second and third stages, samples were collected by swabbing different surfaces before and after 25 ppm ozonisation for 30 min. Results suggested that ozone was most effective on Candida albicans (D = 2.65 min), followed by Escherichia coli (D = 3.14 min), Salmonella phage (D = 5.01 min) and Staphylococcus aureus (D = 5.40 min). Up to 5% of the microbes survived following ozonisation of conventional ambulances. Of the 126 surface samples collected from ambulances transporting patients with COVID-19, 7 were positive (5.6%) for SARS-related coronavirus as determined on reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). Ozone exposure from the ozone generator prototype inside ambulances at a concentration of 25 ppm for 30 min can eliminate gram positive and negative bacteria, yeasts, and viruses.


Subject(s)
COVID-19 , Ozone , Humans , Disinfection/methods , Ambulances , Peru , Pandemics , Staphylococcus aureus , Escherichia coli
3.
Environ Monit Assess ; 195(6): 680, 2023 May 16.
Article in English | MEDLINE | ID: covidwho-2320181

ABSTRACT

COVID-19 lockdown has given us an opportunity to investigate the pollutant concentrations in response to the restricted anthropogenic activities. The atmospheric concentration levels of nitrogen dioxide (NO2), carbon monoxide (CO) and ozone (O3) have been analysed for the periods during the first wave of COVID-19 lockdown in 2020 (25th March-31st May 2020) and during the partial lockdowns due to second wave in 2021 (25th March-15th June 2021) across India. The trace gas measurements from Ozone Monitoring Instrument (OMI) and Atmosphere InfraRed Sounder (AIRS) satellites have been used. An overall decrease in the concentration of O3 (5-10%) and NO2 (20-40%) have been observed during the 2020 lockdown when compared with business as usual (BAU) period in 2019, 2018 and 2017. However, the CO concentration increased up to 10-25% especially in the central-west region. O3 and NO2 slightly increased or had no change in 2021 lockdown when compared with the BAU period, but CO showed a mixed variation prominently influenced by the biomass burning/forest fire activities. The changes in trace gas levels during 2020 lockdown have been predominantly due to the reduction in the anthropogenic activities, whereas in 2021, the changes have been mostly due to natural factors like meteorology and long-range transport, as the emission levels have been similar to that of BAU. Later phases of 2021 lockdown saw the dominant effect of rainfall events resulting in washout of pollutants. This study reveals that partial or local lockdowns have very less impact on reducing pollution levels on a regional scale as natural factors like atmospheric long-range transport and meteorology play deciding roles on their concentration levels.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Environmental Pollutants , Ozone , Humans , COVID-19/epidemiology , Air Pollution/analysis , Air Pollutants/analysis , Nitrogen Dioxide/analysis , Environmental Monitoring/methods , Communicable Disease Control , Ozone/analysis , Environmental Pollutants/analysis , Particulate Matter/analysis
4.
PeerJ ; 11: e15298, 2023.
Article in English | MEDLINE | ID: covidwho-2317085

ABSTRACT

Background: One of the measures for controlling the coronavirus disease 2019 (COVID-19) pandemic was the mass closure of gyms. This measure leads us to determine the differences between indoor and outdoor air quality. That is why the objective of this study was to analyse the indoor air quality of a sports centre catering to small groups and rehabilitation. Methods: The study was conducted in a single training centre, where 26 measurements were taken in two spaces (indoors and outdoors). The air quality index, temperature, relative humidity, total volatile compounds, carbon monoxide, ozone, formaldehyde, carbon dioxide, and particulate matter were measured indoors and outdoors using the same protocol and equipment. These measurements were taken twice, once in the morning and once in the afternoon, with all measurements made at the same time, 10 am and 6 pm, respectively. Additionally, four determinations of each variable were collected during each shift, and the number of people who had trained in the room and the number of trainers were counted. Results: In the different variables analysed, the results show that CO2 and RH levels are higher indoors than outdoors in both measurement shifts. Temperatures are higher outside than inside and, in the evening, than in the morning. TVOC, AQI and PM show less variation, although they are higher outdoors in the morning. CO is highest indoors. HCHO levels are almost negligible and do not vary significantly, except for a slight increase in the afternoon outside. Ozone levels are not significant. All the variables showed practically perfect reliability in all the measurements, except for ozone measured outside in the morning. On the other hand, the variables exhibit variations between indoors and outdoors during the morning and afternoon, except for the three types of PM. Also, the data show that all the main variables measured inside the sports training centre are similar between morning and afternoon. However, outside, temperature, relative humidity and HCHO levels show significant differences between morning and afternoon while no differences are observed for the other variables. Conclusion: The indoor air quality of the training centre assessed was good and met current regulations; some of its components even exhibited better levels than fresh air. This article is the first to measure indoor air quality in a sports training centre catering to rehabilitation and small groups.


Subject(s)
Air Pollutants , Air Pollution, Indoor , COVID-19 , Ozone , Humans , Air Pollution, Indoor/analysis , Air Pollutants/adverse effects , Reproducibility of Results , COVID-19/epidemiology , Ozone/analysis
5.
Arh Hig Rada Toksikol ; 73(4): 270-276, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2310408

ABSTRACT

Even though ozone has shown its potential for air disinfection in hospital environment, its more frequent use has earned attention only with the COVID-19 pandemic due to its proven antimicrobial effect and low cost of production. The aim of this study was to determine its antimicrobial efficiency against the most common bacterial species in a real-life setting, that is, in the air of one postoperative room of the General Hospital Dr Ivo Pedisic (Sisak, Croatia). Air was sampled for aiborne bacteria before and after treatment with the ozone concentration of 15.71 mg/m3 for one hour. The most dominant Gram-positive bacteria of the genera Micrococcus, Staphylococcus, and Bacillus were reduced by 33 %, 58 %, and 61 %, respectively. The genus Micrococcus proved to be the most resistant. Considering our findings, we recommend longer air treatment with higher ozone concentrations in combination with mechanical cleaning and frequent ventilation.


Subject(s)
COVID-19 , Ozone , Humans , Disinfection , Pandemics , Air Microbiology , COVID-19/prevention & control , Bacteria , Hospitals
6.
Braz Oral Res ; 36: e006, 2022.
Article in English | MEDLINE | ID: covidwho-2309020

ABSTRACT

The aim of this scoping review was to provide sufficient information about the effectiveness of ozone gas in virus inactivation of surfaces and objects under different environmental conditions. The review was performed according to the list of PRISMA SrC recommendations and the JBI Manual for Evidence Synthesis for Scoping Reviews. The review was registered in Open Science Framework (OSF). EMBASE (Ovid), Lilacs, LIVIVO, MEDLINE (PubMed), SciELO, Scopus and Web of Science were primary sources, and "gray literature" was searched in OpenGray and OpenThesis. A study was included if it reported primary data on the effect of ozone gas application for vehicle-borne and airborne virus inactivation. No language or publication date restriction was applied. The search was conduct on July 1, 2020. A total of 16,120 studies were screened, and after exclusion of noneligible studies, fifteen studies fulfilled all selection criteria. Application of ozone gas varied in terms of concentration, ozone exposure period and the devices used to generate ozone gas. Twelve studies showed positive results for inactivation of different virus types, including bacteriophages, SARS-CoV-2 surrogates and other vehicle-borne viruses. Most of the studies were classified as unclear regarding sponsorship status. Although most of the population has not yet been vaccinated against COVID-19, disinfection of environments, surfaces, and objects is an essential prevention strategy to control the spread of this disease. The results of this Scoping Review demonstrate that ozone gas is promising for viral disinfection of surfaces.


Subject(s)
COVID-19 , Ozone , Delivery of Health Care , Disinfection , Humans , SARS-CoV-2
7.
Med Gas Res ; 13(4): 172-180, 2023.
Article in English | MEDLINE | ID: covidwho-2303413

ABSTRACT

Ozone therapy (OT), a medical procedure, has been showing good results during the coronavirus disease (COVID-19). We aimed to build an evidence and gaps map (EGM) of OT in the COVID-19 ranking the articles found according to levels of evidence and outcomes. The EGM brings bubbles of different sizes and different colors according to the articles. The OT intervention used was major or minor autohemotherapy, rectal insufflation and ozonized saline solution. EGM was based on 13 clinical studies using OT for COVID-19 involving a total of 271 patients. We found 30 outcomes related to OT in COVID-19. Our EGM divided the outcomes into six groups: 1-clinical improvement; 2-hospitalization; 3-inflammatory, thromboembolic, infectious, or metabolic markers; 4-radiological aspects, 5-viral infection and 6-adverse events. Major autohemotherapy was present in 19 outcomes, followed by rectal insufflation. Improvement in clinical symptoms of COVID-19, improvement of respiratory function, improvement of oxygen saturation, reduction in hospital internment, decrease in C-reactive protein, decrease in ferritin, decrease in lactate dehydrogenase, decrease in interleukin 6, decrease in D-dimer, radiological improvement of lung lesions and absence of reported adverse events were related in the papers. The most commonly used concentrations of OT in major autohemotherapy and in rectal insufflation were 40 µg/mL and 35 µg/mL, respectively. Here, we bring the first EGM showing the efficacy and safety of OT in the treatment of COVID-19. OT can be used as integrative medical therapy in COVID-19 at a low cost and improve the health conditions of the patients.


Subject(s)
COVID-19 , Ozone , Humans , COVID-19/therapy , SARS-CoV-2 , Ozone/therapeutic use , Treatment Outcome , Hospitalization
8.
Med Gas Res ; 13(4): 165-171, 2023.
Article in English | MEDLINE | ID: covidwho-2296173

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has rapidly swept across the world. As new knowledge regarding treatment options for COVID-19 has emerged, the use of ozone therapy in the context of SARS-CoV-2 infection as an integrative therapeutic option supplementary to standard treatment regimen has been assessed in the present literature. We reviewed, critically analyzed, and summarized all present published literature on ozone therapy in association with COVID-19 via the PubMed database. Various reports and studies on the use of ozone (major autohemotherapy, rectal ozone insufflation, ozone inhalation) in patients affected by COVID-19 indicate that ozone therapy may reduce morbidity and accelerate recovery, while exhibiting a high safety profile with no relevant adverse effects. Current literature suggests that integrating ozone therapy into the existing standard of care and best available therapy for the treatment of COVID-19 patients offers major advantages in terms of superior clinical outcome parameters and amelioration of laboratory results. Further prospective studies are warranted to guide the next steps in the clinical application of ozone therapy and examine its impact on the course of COVID-19.


Subject(s)
COVID-19 , Ozone , Humans , COVID-19/therapy , SARS-CoV-2 , Ozone/therapeutic use
9.
Environ Pollut ; 327: 121594, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2296805

ABSTRACT

Exposure to outdoor air pollution may affect incidence and severity of coronavirus disease 2019 (COVID-19). In this retrospective cohort based on patient records from the Greater Manchester Care Records, all first COVID-19 cases diagnosed between March 1, 2020 and May 31, 2022 were followed until COVID-19 related hospitalization or death within 28 days. Long-term exposure was estimated using mean annual concentrations of particulate matter with diameter ≤2.5 µm (PM2.5), ≤10 µm (PM10), nitrogen dioxide (NO2), ozone (O3), sulphur dioxide (SO2) and benzene (C6H6) in 2019 using a validated air pollution model developed by the Department for Environment, Food and Rural Affairs (DEFRA). The association of long-term exposure to air pollution with COVID-19 hospitalization and mortality were estimated using multivariate logistic regression models after adjusting for potential individual, temporal and spatial confounders. Significant positive associations were observed between PM2.5, PM10, NO2, SO2, benzene and COVID-19 hospital admissions with odds ratios (95% Confidence Intervals [CI]) of 1.27 (1.25-1.30), 1.15 (1.13-1.17), 1.12 (1.10-1.14), 1.16 (1.14-1.18), and 1.39 (1.36-1.42), (per interquartile range [IQR]), respectively. Significant positive associations were also observed between PM2.5, PM10, SO2, or benzene and COVID-19 mortality with odds ratios (95% CI) of 1.39 (1.31-1.48), 1.23 (1.17-1.30), 1.18 (1.12-1.24), and 1.62 (1.52-1.72), per IQR, respectively. Individuals who were older, overweight or obese, current smokers, or had underlying comorbidities showed greater associations between all pollutants of interest and hospital admission, compared to the corresponding groups. Long-term exposure to air pollution is associated with developing severe COVID-19 after a positive SARS-CoV-2 infection, resulting in hospitalization or death.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Ozone , Humans , Air Pollutants/analysis , Cohort Studies , Retrospective Studies , Benzene , COVID-19/epidemiology , SARS-CoV-2 , Air Pollution/adverse effects , Air Pollution/analysis , Particulate Matter/analysis , Ozone/analysis , United Kingdom/epidemiology , Environmental Exposure/analysis , Nitrogen Dioxide/analysis
10.
Sci Total Environ ; 881: 163485, 2023 Jul 10.
Article in English | MEDLINE | ID: covidwho-2306421

ABSTRACT

BACKGROUND: Short-term ambient ozone exposure has been shown to have an adverse impact on endothelial function, contributing to major cardiovascular diseases and premature death. However, only limited studies have focused on the impact of short-term ozone exposure on Flow-mediated Dilation (FMD), and their results have been inconsistent. The current study aims to explore the relationship between short-term ambient ozone exposure and FMD. In addition, the study aims to investigate how lockdown measures for COVID-19 may influence ozone concentration in the atmosphere. METHODS: Participants were recruited from a hospital in Shanghai from December 2020 to August 2022. Individuals' ozone exposure was determined using residential addresses. A distributed lag nonlinear model was adopted to assess the exposure-response relationship between short-term ozone exposure and FMD. A comparison was made between ambient ozone concentration and FMD data collected before and after Shanghai's lockdown in 2022. RESULTS: When ozone concentration was between 150 and 200 µg/m3, there was a significant reduction in FMD with a 2-day lag. Elderly individuals (age ≥ 65), females, non-drinkers, and non-smokers were found to be more susceptible to high concentrations of ozone exposure. The lockdown did elevate ambient ozone concentration compared to the same period previously. INTERPRETATION: This study proposes that an ambient ozone concentration of 150-200 µg/m3 is harmful to endothelial function, and that a reduction in human activity during lockdown increased the concentration, which in turn reduced FMD. However, the underlying mechanism requires further research.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Ozone , Female , Humans , Aged , Air Pollution/analysis , Air Pollutants/analysis , Dilatation , China/epidemiology , Communicable Disease Control , Ozone/analysis , Particulate Matter/analysis , Environmental Exposure/analysis
11.
Sci Total Environ ; 876: 162704, 2023 Jun 10.
Article in English | MEDLINE | ID: covidwho-2274002

ABSTRACT

The widespread COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) necessitated measures aimed at preventing the spread of SARS-CoV-2. To mitigate the risk of fomite-mediated transmission, environmental cleaning and disinfection regimes have been widely implemented. However, conventional cleaning approaches such as surface wipe downs can be laborious and more efficient and effective disinfecting technologies are needed. Gaseous ozone disinfection is one technology which has been shown to be effective in laboratory studies. Here, we evaluated its efficacy and feasibility in a public bus setting, using murine hepatitis virus (a related betacoronavirus surrogate) and the bacteria Staphylococcus aureus as test organisms. An optimal gaseous ozone regime resulted in a 3.65-log reduction of murine hepatitis virus and a 4.73-log reduction of S. aureus, and decontamination efficacy correlated with exposure duration and relative humidity in the application space. These findings demonstrated gaseous ozone disinfection in field settings which can be suitably translated to public and private fleets that share analogous characteristics.


Subject(s)
Anti-Infective Agents , COVID-19 , Ozone , Mice , Animals , Humans , COVID-19/prevention & control , SARS-CoV-2 , Decontamination/methods , Staphylococcus aureus , Pandemics/prevention & control , Disinfection/methods
12.
Photochem Photobiol Sci ; 22(5): 991-1009, 2023 May.
Article in English | MEDLINE | ID: covidwho-2251973

ABSTRACT

There are several connections between coronavirus disease 2019 (COVID-19), solar UV radiation, and the Montreal Protocol. Exposure to ambient solar UV radiation inactivates SARS-CoV-2, the virus responsible for COVID-19. An action spectrum describing the wavelength dependence of the inactivation of SARS-CoV-2 by UV and visible radiation has recently been published. In contrast to action spectra that have been assumed in the past for estimating the effect of UV radiation on SARS-CoV-2, the new action spectrum has a large sensitivity in the UV-A (315-400 nm) range. If this "UV-A tail" is correct, solar UV radiation could be much more efficient in inactivating the virus responsible for COVID-19 than previously thought. Furthermore, the sensitivity of inactivation rates to the total column ozone would be reduced because ozone absorbs only a small amount of UV-A radiation. Using solar simulators, the times for inactivating SARS-CoV-2 have been determined by several groups; however, many measurements are affected by poorly defined experimental setups. The most reliable data suggest that 90% of viral particles embedded in saliva are inactivated within ~ 7 min by solar radiation for a solar zenith angle (SZA) of 16.5° and within ~ 13 min for a SZA of 63.4°. Slightly longer inactivation times were found for aerosolised virus particles. These times can become considerably longer during cloudy conditions or if virus particles are shielded from solar radiation. Many publications have provided evidence of an inverse relationship between ambient solar UV radiation and the incidence or severity of COVID-19, but the reasons for these negative correlations have not been unambiguously identified and could also be explained by confounders, such as ambient temperature, humidity, visible radiation, daylength, temporal changes in risk and disease management, and the proximity of people to other people. Meta-analyses of observational studies indicate inverse associations between serum 25-hydroxy vitamin D (25(OH)D) concentration and the risk of SARS-CoV-2 positivity or severity of COVID-19, although the quality of these studies is largely low. Mendelian randomisation studies have not found statistically significant evidence of a causal effect of 25(OH)D concentration on COVID-19 susceptibility or severity, but a potential link between vitamin D status and disease severity cannot be excluded as some randomised trials suggest that vitamin D supplementation is beneficial for people admitted to a hospital. Several studies indicate significant positive associations between air pollution and COVID-19 incidence and fatality rates. Conversely, well-established cohort studies indicate no association between long-term exposure to air pollution and infection with SARS-CoV-2. By limiting increases in UV radiation, the Montreal Protocol has also suppressed the inactivation rates of pathogens exposed to UV radiation. However, there is insufficient evidence to conclude that the expected larger inactivation rates without the Montreal Protocol would have had tangible consequences on the progress of the COVID-19 pandemic.


Subject(s)
COVID-19 , Ozone , Humans , Ultraviolet Rays/adverse effects , SARS-CoV-2 , Pandemics , Ozone/analysis , Vitamin D
13.
Genes (Basel) ; 14(1)2022 12 28.
Article in English | MEDLINE | ID: covidwho-2236942

ABSTRACT

Pathogenic bacteria and viruses in medical environments can lead to treatment complications and hospital-acquired infections. Current disinfection protocols do not address hard-to-access areas or may be beyond line-of-sight treatment, such as with ultraviolet radiation. The COVID-19 pandemic further underscores the demand for reliable and effective disinfection methods to sterilize a wide array of surfaces and to keep up with the supply of personal protective equipment (PPE). We tested the efficacy of Sani Sport ozone devices to treat hospital equipment and surfaces for killing Escherichia coli, Enterococcus faecalis, Bacillus subtilis, and Deinococcus radiodurans by assessing Colony Forming Units (CFUs) after 30 min, 1 h, and 2 h of ozone treatment. Further gene expression analysis was conducted on live E. coli K12 immediately post treatment to understand the oxidative damage stress response transcriptome profile. Ozone treatment was also used to degrade synthetic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA as assessed by qPCR CT values. We observed significant and rapid killing of medically relevant and environmental bacteria across four surfaces (blankets, catheter, remotes, and syringes) within 30 min, and up to a 99% reduction in viable bacteria at the end of 2 h treatment cycles. RNA-seq analysis of E. coli K12 revealed 447 differentially expressed genes in response to ozone treatment and an enrichment for oxidative stress response and related pathways. RNA degradation of synthetic SARS-CoV-2 RNA was seen an hour into ozone treatment as compared to non-treated controls, and a non-replicative form of the virus was shown to have significant RNA degradation at 30 min. These results show the strong promise of ozone treatment of surfaces for reducing the risk of hospital-acquired infections and as a method for degradation of SARS-CoV-2 RNA.


Subject(s)
COVID-19 , Cross Infection , Ozone , Humans , SARS-CoV-2/genetics , RNA, Viral/analysis , Disinfection/methods , Ozone/pharmacology , Escherichia coli/genetics , Pandemics , Ultraviolet Rays , Bacteria
14.
PeerJ ; 11: e14489, 2023.
Article in English | MEDLINE | ID: covidwho-2203235

ABSTRACT

Background: Coronavirus disease has affected the entire population worldwide in terms of physical and environmental consequences. Therefore, the current study demonstrates the changes in the concentration of gaseous pollutants and their health effects during the COVID-19 pandemic in Delhi, the national capital city of India. Methodology: In the present study, secondary data on gaseous pollutants such as nitrogen dioxide (NO2), carbon monoxide (CO), sulfur dioxide (SO2), ammonia (NH3), and ozone (O3) were collected from the Central Pollution Control Board (CPCB) on a daily basis. Data were collected from January 1, 2020, to September 30, 2020, to determine the relative changes (%) in gaseous pollutants for pre-lockdown, lockdown, and unlockdown stages of COVID-19. Results: The current findings for gaseous pollutants reveal that concentration declined in the range of 51%-83% (NO), 40%-69% (NOx), 31%-60% (NO2), and 25%-40% (NH3) during the lockdown compared to pre-lockdown period, respectively. The drastic decrease in gaseous pollutants was observed due to restricted measures during lockdown periods. The level of ozone was observed to be higher during the lockdown periods as compared to the pre-lockdown period. These gaseous pollutants are linked between the health risk assessment and hazard identification for non-carcinogenic. However, in infants (0-1 yr), Health Quotient (HQ) for daily and annual groups was found to be higher than the rest of the exposed group (toddlers, children, and adults) in all the periods. Conclusion: The air quality values for pre-lockdown were calculated to be "poor category to "very poor" category in all zones of Delhi, whereas, during the lockdown period, the air quality levels for all zones were calculated as "satisfactory," except for Northeast Delhi, which displayed the "moderate" category. The computed HQ for daily chronic exposure for each pollutant across the child and adult groups was more than 1 (HQ > 1), which indicated a high probability to induce adverse health outcomes.


Subject(s)
Air Pollutants , COVID-19 , Environmental Pollutants , Ozone , Infant , Adult , Humans , COVID-19/epidemiology , Air Pollutants/adverse effects , Particulate Matter/analysis , Nitrogen Dioxide/adverse effects , Pandemics , Communicable Disease Control , Ozone/adverse effects
15.
J Hazard Mater ; 446: 130749, 2023 03 15.
Article in English | MEDLINE | ID: covidwho-2165552

ABSTRACT

High levels of ground level ozone (O3) are associated with detrimental health concerns. Most of the studies only focused on daily average and daytime trends due to the presence of sunlight that initiates its formation. However, atmospheric chemical reactions occur all day, thus, nighttime concentrations should be given equal importance. In this study, geospatial-artificial intelligence (Geo-AI) which combined kriging, land use regression (LUR), machine learning, an ensemble learning, was applied to develop ensemble mixed spatial models (EMSMs) for daily, daytime, and nighttime periods. These models were used to estimate the long-term O3 spatio-temporal variations using a two-decade worth of in-situ measurements, meteorological parameters, geospatial predictors, and social and season-dependent factors. From the traditional LUR approach, the performance of EMSMs improved by 60% (daytime), 49% (nighttime), and 57% (daily). The resulting daily, daytime, and nighttime EMSMs had a high explanatory power with and adjusted R2 of 0.91, 0.91, and 0.88, respectively. Estimation maps were produced to examine the changes before and during the implementation of nationwide COVID-19 restrictions. These results provide accurate estimates and its diurnal variation that will support pollution control measure and epidemiological studies.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Ozone , Humans , Ozone/analysis , Air Pollutants/analysis , Artificial Intelligence , Taiwan , Environmental Monitoring/methods , Air Pollution/analysis , Particulate Matter/analysis
16.
Int J Environ Res Public Health ; 19(23)2022 Dec 03.
Article in English | MEDLINE | ID: covidwho-2163349

ABSTRACT

Surface ozone concentrations (O3) during the period 2006-2021 are analysed at Córdoba city (southern Iberian Peninsula) in suburban and urban sampling sites. The aims are to present the levels and temporal variations, to explore trends and to quantity the variation in O3 concentrations in the context of the COVID-19 lockdown. The O3 means are higher in the suburban station (62 µg m-3 and 51.3 µg m-3), being the information level threshold only exceeded twice during this period. The daily evolution shows a maximum at about 17:00 UTC, whereas the minimum is reached at about 9:00 UTC, with higher levels in the suburban station. The seasonal evolution of this daily cycle also presents monthly differences in shape and intensity between stations. The trends are analysed by means of daily averages and daily 5th and 95th percentiles, and they show a similar increase in all of these parameters, with special emphasis on the daily P95 concentrations, with 0.27 µg m-3 year-1 and 0.24 µg m-3 year-1. Finally, the impact of the COVID-19 lockdown shows a decline in O3 concentrations over 10%.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Ozone , Humans , Ozone/analysis , Air Pollutants/analysis , Environmental Monitoring , COVID-19/epidemiology , Seasons , Communicable Disease Control , Air Pollution/analysis
17.
Nature ; 612(7940): 477-482, 2022 12.
Article in English | MEDLINE | ID: covidwho-2160238

ABSTRACT

Atmospheric methane growth reached an exceptionally high rate of 15.1 ± 0.4 parts per billion per year in 2020 despite a probable decrease in anthropogenic methane emissions during COVID-19 lockdowns1. Here we quantify changes in methane sources and in its atmospheric sink in 2020 compared with 2019. We find that, globally, total anthropogenic emissions decreased by 1.2 ± 0.1 teragrams of methane per year (Tg CH4 yr-1), fire emissions decreased by 6.5 ± 0.1 Tg CH4 yr-1 and wetland emissions increased by 6.0 ± 2.3 Tg CH4 yr-1. Tropospheric OH concentration decreased by 1.6 ± 0.2 per cent relative to 2019, mainly as a result of lower anthropogenic nitrogen oxide (NOx) emissions and associated lower free tropospheric ozone during pandemic lockdowns2. From atmospheric inversions, we also infer that global net emissions increased by 6.9 ± 2.1 Tg CH4 yr-1 in 2020 relative to 2019, and global methane removal from reaction with OH decreased by 7.5 ± 0.8 Tg CH4 yr-1. Therefore, we attribute the methane growth rate anomaly in 2020 relative to 2019 to lower OH sink (53 ± 10 per cent) and higher natural emissions (47 ± 16 per cent), mostly from wetlands. In line with previous findings3,4, our results imply that wetland methane emissions are sensitive to a warmer and wetter climate and could act as a positive feedback mechanism in the future. Our study also suggests that nitrogen oxide emission trends need to be taken into account when implementing the global anthropogenic methane emissions reduction pledge5.


Subject(s)
Atmosphere , Methane , Wetlands , Humans , Communicable Disease Control/statistics & numerical data , COVID-19/epidemiology , Methane/analysis , Ozone/analysis , Atmosphere/chemistry , Human Activities/statistics & numerical data , Time Factors , History, 21st Century , Temperature , Humidity , Nitrogen Oxides/analysis
18.
Sci Total Environ ; 863: 160769, 2023 Mar 10.
Article in English | MEDLINE | ID: covidwho-2159792

ABSTRACT

Carbonyls have attracted continuous attention due to their critical roles in atmospheric chemistry and their potential hazards to the ecological environment and human health. In this study, atmospheric carbonyls were measured during several ground-level-ozone (O3) pollution episodes at three urban sites (CRAES, IEP and BJUT) in Beijing in 2019 and 2020. Comparative analysis revealed that the carbonyl concentrations were 20.25 ± 6.91 ppb and 13.43 ± 5.13 ppb in 2019 and 2020 in Beijing, respectively, with a significant spatial trend from north to south, and carbonyl levels in urban Beijing were in an upper-intermediate range in China, and higher than those in other countries reported in the literature. A particularly noteworthy phenomenon is the consistency of carbonyl concentrations with variations in O3 concentrations. On O3 polluted days, the carbonyl concentrations were 1.3-1.5 times higher than those on non-O3 polluted days. Secondary formation contributed more to formaldehyde (FA) and acetaldehyde (AA) on O3 polluted days, while the anthropogenic emissions were more significant for acetone (AC) on non-O3 polluted days. Vehicle exhaust and solvent utilization were the main primary contributors to carbonyls. Due to reduced anthropogenic emissions caused by the COVID-19 lockdown and the "Program for Controlling Volatile Organic Compounds in 2020" in China, the contributions of primary emissions to carbonyls decreased in 2020 in Beijing. Human cancer risks to exposed populations from FA and AA increased with elevated O3 levels, and the risks still remained on non-O3 polluted days. The residents around the BJUT site might experience relatively higher human cancer risks than those around the other two sites. The findings in this study confirmed that atmospheric carbonyl pollution and its potential human health hazards cannot be ignored in urban Beijing; therefore, more strict control strategies for atmospheric carbonyls are urgently needed to better protect human health in Beijing in the future.


Subject(s)
Air Pollutants , COVID-19 , Ozone , Volatile Organic Compounds , Humans , Beijing , Ozone/analysis , Air Pollutants/analysis , Environmental Monitoring , Communicable Disease Control , China , Volatile Organic Compounds/analysis , Risk Assessment , Acetaldehyde/analysis , Formaldehyde/analysis
19.
Sci Total Environ ; 862: 160711, 2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2150570

ABSTRACT

The large-scale global COVID-19 has a profound impact on human society. Timely and effectively blocking the virus spread is the key to controlling the pandemic growth. Ozone-based inactivation and disinfection techniques have been shown to effectively kill SARS-CoV-2 in water, aerosols and on solid surface. However, the lack of an unified information and discussion on ozone-based inactivation and disinfection in current and previous pandemics and the absence of consensus on the main mechanisms by which ozone-based inactivation of pandemic causing viruses have hindered the possibility of establishing a common basis for identifying best practices in the utilization of ozone technology. This article reviews the research status of ozone (O3) disinfection on pandemic viruses (especially SARS-CoV-2). Taking sterilization kinetics as the starting point while followed by distinguishing the pandemic viruses by enveloped and non-enveloped viruses, this review focuses on analyzing the scope of application of the sterilization model and the influencing factors from the experimental studies and data induction. It is expected that the review could provide an useful reference for the safe and effective O3 utilization of SARS-CoV-2 inactivation in the post-pandemic era.


Subject(s)
COVID-19 , Ozone , Viruses , Humans , Disinfection/methods , Ozone/pharmacology , Pandemics/prevention & control , COVID-19/prevention & control , SARS-CoV-2
20.
Complement Ther Med ; 72: 102907, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2149611

ABSTRACT

BACKGROUND: The Coronavirus disease-2019 (COVID-19) pandemic continues, and the death toll continues to surge. Ozone therapy has long been used in the treatment of a variety of infectious diseases, probably through its antioxidant properties and the supply of oxygen to hypoxic tissues. This systematic review and meta-analysis aimed to determine the efficacy of ozone on mortality in patients with COVID-19. METHODS: A systematic search was made of PubMed, Embase, Cochrane Library, and clinicaltrials.gov, without language restrictions. Prospective controlled trials on treatment of COVID-19 with ozone, compared with placebo or blank, were reviewed. Studies were pooled to risk ratios (RRs) and weighted mean differences (WMDs), with 95% confidence intervals (CIs). RESULTS: Eight trials (enrolling 371 participants) met the inclusion criteria. Ozone therapy showed significant effects on mortality (RR 0.38, 95% CI 0.17-0.85; P = 0.02), length of hospital stay (WMD -1.63 days, 95% CI -3.05 to -0.22 days; P = 0.02), and polymerase chain reaction (PCR) positivity (RR 0.07, 95% CI 0.01-0.34; P = 0.001). CONCLUSIONS: Ozone therapy significantly reduced mortality, PCR positivity, and length of stay in hospitalized patients with COVID-19. Ozone therapy should be considered for COVID-19 patients.


Subject(s)
COVID-19 , Ozone , Humans , Ozone/therapeutic use , Prospective Studies , Antioxidants
SELECTION OF CITATIONS
SEARCH DETAIL